Generate Public Key From Private Key Java
getInstance
factory methods (static methods that return instances of a given class). A Key pair generator for a particular algorithm creates a public/private key pair that can be used with this algorithm. It also associates algorithm-specific parameters with each of the generated keys.
There are two ways to generate a key pair: in an algorithm-independent manner, and in an algorithm-specific manner. The only difference between the two is the initialization of the object:
Oct 21, 2016 Create and read PKCS #8 format private key in java program. In this short article I will show you how to store private key in pkcs8 format in java and again read back the stored key in java. PKCS #8 defines a standard syntax for storing private key information. The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the modulus n and the private (or decryption) exponent d, which must be kept secret. P, q, and λ(n) must also be kept secret because they can be used to calculate d. The public modulus n can be computed as p × q. To generate the missing public key again from the private key, the following command will generate the public key of the private key provided with the -f option. $ ssh-keygen -y -f /.ssh/idrsa /.ssh/idrsa.pub Enter passphrase: The -y option will read a private SSH key file and prints an SSH public key to stdout. The public key part is redirected to the file with the same name as the private key but.
Public Keys, Private Keys, and Certificates. When performing authentication, SSL uses a technique called public-key cryptography. Public-key cryptography is based on the concept of a key pair, which consists of a public key and a private key.Data that has been encrypted with a public key can be decrypted only with the corresponding private key.
- Algorithm-Independent Initialization
All key pair generators share the concepts of a keysize and a source of randomness. The keysize is interpreted differently for different algorithms (e.g., in the case of the DSA algorithm, the keysize corresponds to the length of the modulus). There is an
initialize
method in this KeyPairGenerator class that takes these two universally shared types of arguments. There is also one that takes just akeysize
argument, and uses theSecureRandom
implementation of the highest-priority installed provider as the source of randomness. (If none of the installed providers supply an implementation ofSecureRandom
, a system-provided source of randomness is used.)Since no other parameters are specified when you call the above algorithm-independent
initialize
methods, it is up to the provider what to do about the algorithm-specific parameters (if any) to be associated with each of the keys.If the algorithm is the DSA algorithm, and the keysize (modulus size) is 512, 768, or 1024, then the Sun provider uses a set of precomputed values for the
p
,q
, andg
parameters. If the modulus size is not one of the above values, the Sun provider creates a new set of parameters. Other providers might have precomputed parameter sets for more than just the three modulus sizes mentioned above. Still others might not have a list of precomputed parameters at all and instead always create new parameter sets. - Algorithm-Specific Initialization
For situations where a set of algorithm-specific parameters already exists (e.g., so-called community parameters in DSA), there are two
initialize
methods that have anAlgorithmParameterSpec
argument. One also has aSecureRandom
argument, while the the other uses theSecureRandom
implementation of the highest-priority installed provider as the source of randomness. (If none of the installed providers supply an implementation ofSecureRandom
, a system-provided source of randomness is used.)
Generate Ssh Public Key From Private Key
In case the client does not explicitly initialize the KeyPairGenerator (via a call to an initialize
method), each provider must supply (and document) a default initialization. For example, the Sun provider uses a default modulus size (keysize) of 1024 bits.
Generate Public Key From Private Key Java Mac
Note that this class is abstract and extends from KeyPairGeneratorSpi
for historical reasons. Application developers should only take notice of the methods defined in this KeyPairGenerator
class; all the methods in the superclass are intended for cryptographic service providers who wish to supply their own implementations of key pair generators.
Every implementation of the Java platform is required to support the following standard KeyPairGenerator
algorithms and keysizes in parentheses:
DiffieHellman
(1024)DSA
(1024)RSA
(1024, 2048)
A lost SSH public-key or a web service generates an SSH key but does not provide the public-key part to you. What to do now? There is a solution for this situation.
When you have an SSH key you need the public key to setup SSH passwordless login with SSH-key. But if you have lost the public key part but still have the private key, there is a way to regenerate the key.
With the public key missing, the following command will show you that there is no public key for this SSH key.
The -l option instructs to show the fingerprint in the public key while the -f option specifies the file of the key to list the fingerprint for.
To generate the missing public key again from the private key, the following command will generate the public key of the private key provided with the -f option.
The -y option will read a private SSH key file and prints an SSH public key to stdout. The public key part is redirected to the file with the same name as the private key but with the .pub file extension. If the key has a password set, the password will be required to generate the public key.
To check the details of the generated public key execute the following command as shown above.
The output of this command shows the key size as the first column, the fingerprint as the second column and after the file name, the type is shown in brackets. In the example above, a 4096 bit RSA key.
Generate Public Key And Private Key Using Java
Read more of my posts on my blog at http://blog.tinned-software.net/.